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Recently, there has been increased attention toward 3D imaging using single-pixel single-photon detection (also known as
temporal data) due to its potential advantages in terms of cost and power efficiency. However, to eliminate the symmetry
blur in the reconstructed images, a fixed background is required. This paper proposes a fusion-data-based 3D imaging
method that utilizes a single-pixel single-photon detector and millimeter-wave radar to capture temporal histograms
of a scene from multiple perspectives. Subsequently, the 3D information can be reconstructed from the one-dimensional
fusion temporal data by using an artificial neural network. Both the simulation and experimental results demonstrate that
our fusion method effectively eliminates symmetry blur and improves the quality of the reconstructed images.
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1. Introduction

3D imaging finds wide applications in systems such as automatic
driving target recognition, unmanned aerial vehicle (UAV)
automatic navigation, and reconnaissance surveillance. Three
main methods are commonly used for 3D imaging: structured
light[1–3], binocular stereo imaging[4–7], and time of flight
(ToF)[8–10]. ToF imaging has gained significant attention due
to its advantages, includingmedium and long-distancemeasure-
ment capability, high precision, and strong anti-interference
ability. Direct time-of-flight (D-ToF) methods estimate depth
information by measuring the flight time of light from the scene
to the sensor. Currently, three mainstream methods are used to
capture lateral spatial information in ToF imaging: the single-
photon avalanche diode (SPAD) array sensor[11–14], single-pixel
imaging combined with specialized structured lighting[15–20],
and single-pixel imaging combined with scanning tech-
niques[21–27]. Due to the high cost of SPAD array sensors, the
low-cost and highly sensitive single-pixel imaging method has
gained more attention. In recent years, single-pixel imaging
has also produced significant research results. This method uti-
lizes low-cost color LED arrays for structured illumination, ena-
bling color imaging with single photodiodes[28]. Moreover, by
adding a small number of photodiodes at different positions,
the method can be extended to 3D imaging. While the above

method combines multiple single-pixel detectors for 3D imag-
ing, it does not achieve true single-pixel 3D imaging. Ghost im-
aging employs a computer-controlled spatial light modulator
(SLM) to generate speckle pattern illumination on the object,
eliminating the requirement for beam splitters and array detec-
tors. Imaging is accomplished by synchronously measuring the
light intensity from the bucket detector[15–17,29]. Otherwise, a
pulsed laser uniformly illuminates a digital micromirror device
(DMD), used to provide structured illumination onto a scene,
and the backscattered light is collected onto a photodiode.
The measured light intensities are used in a 3D reconstruc-
tion algorithm to reconstruct both depth and reflectivity
images[18–20]. However, specialized structured lighting is typi-
cally not suitable for long-distance 3D imaging. In contrast,
combining single-pixel SPAD with scanning structures enables
long-distance 3D imaging with high spatial resolution[21–24]. By
implementing time filtering to suppress noise, single-pixel
imaging can achieve an average imaging sensitivity of 0.4 signal
photons per pixel, enabling long-range 3D imaging up to
200 km[25–27].
To acquire lateral spatial information of targets, the afore-

mentioned single-pixel imaging methods rely on array sensors,
specialized structured lighting, or single-pixel scanning tech-
niques. However, the high costs and complex structures associ-
ated with these approaches hinder the progress of single-pixel
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imaging. Consequently, alternative methods that do not involve
scanning or unique lighting structures have been proposed in
recent years[30–32]. These methods, known as 3D imaging from
temporal data, capture the temporal information (ToF) of the
entire scene using a single-pixel single-photon detector (SPD)
and a time digital converter (TDC), followed by reconstruction
of the 3D images using an artificial neural network (ANN)[33–36].
However, the aforementioned methods inherently exhibit sym-
metry blur issues. This arises because a scene with center sym-
metry, captured by a single-pixel detector placed at its center,
yields identical measurement results. For instance, the same
measurement value is obtained for symmetrical positions on
the left and right sides of a single-pixel sensor. One approach[30]

to addressing this problem is to introduce a background that
reveals the relative position of the subject. Another strategy[32]

involves leveraging multipath time signals to gather more scene-
related data. However, both of these methods heavily rely on the
specific requirements of the scene and may fail to produce accu-
rate images if the background is a plain wall or lacks distinguish-
ing features.
This paper proposes a fusion-data-based method for 3D im-

aging. Our approach involves placing a single-pixel SPD and a
millimeter-wave radar at different locations, forming a specific
angle with respect to the target. The SPD records the arrival time
of return photons from the entire scene as a temporal histogram,
while the millimeter-wave radar captures the one-dimensional
(1D) range profile of the scene. The data from the SPD and radar
are directly fused and input into an ANN for 3D scene
reconstruction. Millimeter-wave radar is a radar system that
operates in the millimeter-wave frequency band (approximately
30–300 GHz). This radar technology has high resolution and
accuracy, making it valuable in various applications. In fact,
millimeter-wave radar is widely used in many applications, such
as autonomous vehicles, drones, and aviation radar[37–39]. The
fusion approach of SPD + millimeter-wave radar is used in this
paper because millimeter-wave radar offers numerous advan-
tages that SPD does not possess. For instance, it has a strong
adaptability to adverse weather conditions and can operate nor-
mally in rain, smog, and heavy snow. Additionally, millimeter-
wave radar is less susceptible to interference from other light
sources, such as sunlight or car headlights. More importantly,
millimeter-wave radar is generally cheaper and has a higher level
of integration. Typically, an entire millimeter-wave radar system
can be integrated onto a small circuit board. The added cost of
using a system with SPD + millimeter-wave radar, compared to
the one using only a single-pixel SPD, is negligible. Therefore, we
believe that the system architecture of SPD + millimeter-wave
radar can fully capitalize on the strengths of both types of sen-
sors and overcome the weaknesses of using a single sensor,
achieving a synergistic effect where the whole is greater than
the sum of its parts. By integrating the single-pixel SPD and
millimeter-wave radar, our method achieves higher accuracy
in 3D scene reconstruction and effectively addresses the sym-
metry blur issue without the need for a background. Both sim-
ulation and experimental results demonstrate the successful

elimination of symmetry blur and significant improvement in
the quality of reconstructed images.
The remainder of this paper is structured as follows. Section 2

presents a theoretical analysis of the imaging method, address-
ing the associated challenges, and introduces the imaging algo-
rithm based on ANN. In Section 3, numerical simulations are
conducted to compare the performance of the two imaging
methods under various imaging conditions, demonstrating
the effectiveness of the proposed approach. Section 4 describes
the imaging experiments performed using an optical system
operating at 1550 nm and a 60 GHz millimeter-wave radar,
assessing the feasibility of the proposed method. Section 5 dis-
cusses the potential capabilities of our method in challenging
environments. Finally, Section 6 concludes the paper.

2. System Framework and Imaging Principle

The proposed fusion-data-based 3D imaging method is illus-
trated in Fig. 1, comprising two main processes: data acquisition
[Fig. 1(a)] and 3D image recovery [Fig. 1(b)]. During the data
acquisition process, a millimeter-wave radar is positioned in
proximity to a single-pixel SPD at a specific angle relative to
the target under measurement. This arrangement mimics bin-
ocular imaging as the millimeter-wave radar and SPD are sep-
arated by a certain distance. The temporal histogram of the SPD
andmillimeter-wave data is fused to generate a fusion histogram
by connecting them. Concurrently, a high-precision depth cam-
era captures the 3D image of the target solely for training pur-
poses, not participating in the image recovery process. By
varying the target’s orientation and position during data acquis-
ition, a substantial number of real measured training data are
obtained. Each pair of data for 3D image recovery consists of
one fusion histogram and one depth map. In the 3D image
recovery process, the acquired fusion histogram serves as input,
while the depth map functions as output for training an ANN.
Sufficient training data and iterations enable the ANN to effec-
tively learn themapping between the input fusion histogram and
depth map. Once trained, the network can directly retrieve new,
untrained targets by inputting the acquired fusion histogram
data from the millimeter-wave radar and the SPD.
To describe this method mathematically, it is simple to con-

struct a forward model where all points in the scene that are at
some distance, ri = �xi, yi, zi�, from the SPD provide a related

photon arrival time, ti = c−1jrij = c−1
������������������������������
�x2i � y2i � z2i �

p
(where

c is the speed of light). By recording the number of photons
arriving at different times ti, we can build up a temporal histo-
gram Hs that contains information about the scene in 3D. This
calculation process could be represented as Hs = Fs�I�, where I
represents the model of the 3D scene and Fs represents the cal-
culation from the 3D scene to a 1D temporal histogram.
The same purpose as SPD, millimeter-wave radar also con-

verts echo collection containing 3D scene information into a
1D histogram. Assume that the millimeter-wave radar transmits
a linear frequencymodulation (LFM) pulse, which is generally in
the form of
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s�t� = w�t� exp�jϕ�t��, (1)

where w�t� is the real envelope of the signal, ϕ�t� is the signal
modulation phase, and j represents the imaginary unit. For stan-
dard LFM signals,

w�t� = rec

�
t
Tp

�
, ϕ�t� = 2πf ct � πKt2, (2)

where rect�x� denotes the rectangular function, Tp is the pulse
width of the signal, f c is the center frequency, and K is the chirp
rate. When the distance of the target is R, after the LFM pulse
reflected by the target, the time delay of the echo is
t0 = 2R=c; then the echo signal can be expressed as

sr�t� = s�t − t0� = rect

�
t − t0
Tp

�
exp�jπK�t − t0�2�: (3)

To generate the range information of the targets, a matched
filter processing method can be performed. Finally, the output is
approximately expressed as

sout�t� ≈ Tp sinc�K�t − t0��, (4)

where sinc�x� = sin�πx�=�πx�. Thus, the target distance infor-
mation sout�t�, which can be represented as 1D histogram
Hm, can be extracted from the echo signal. The process of milli-
meter-wave radar obtaining a 1D histogram from a 3D scene can
also be expressed as Hm = Fm�I�. When the data from the SPD
and millimeter-wave radar are fused, the overall forward model
can be expressed as H = F�I�.
The goal is to find a mapping F−1 that can recover the 3D

image I from H. The specific method is to adopt a supervised
training approach by gathering a set of temporal histograms cor-
responding to various scenarios along with the associated
ground-truth 3D images taken with a depth camera. These data

are then used to train the ANN to find an approximate solution
to the F−1. When the ANN training is completed (which hap-
pens only once), it can reconstruct new 3D images from
untrained temporal histograms.

3. Numerical Results

In this section, we conduct simulations of our proposed fusion-
data-based 3D imaging model and compare it with the method
that utilizes only a single-pixel SPD. The specific simulation sce-
nario is depicted in Fig. 1. We position various virtual human
models in space and assume that data collection is performed
by the millimeter-wave radar located on the left side of the sin-
gle-pixel SPD at a distance of 0.5 m. Meanwhile, the depth cam-
era is positioned in the center. Simulations are conducted for two
cases: with andwithout background. In the background-free sce-
nario, we exclude the background and solely retain the data cor-
responding to the human model for simulation. Conversely, in
the scenario with background, we situate the human model
within a virtual indoor scene for simulation (further details
can be found in the Supplementary Material).
To assess the potential performance under ideal conditions,

which represent the best capabilities of current equipment, we
conducted simulations with a system time resolution [impulse
response function (IFR)] set to 2 ps (further details regarding
the analysis of imaging resolution can be found in the
Supplementary Material). When utilizing only the temporal
histogram from a single-pixel SPD for training, the resulting
image after passing through the ANN closely resembles the
one illustrated in Fig. 2(a).
Consequently, if a single-pixel SPD alone is employed to

detect a target in the absence of background, the multi-layer per-
ceptron (MLP) model fails to differentiate between the left and
right sides of the detector, resulting in an image with superim-
posed left and right targets. Currently, the prevalent solution for

Depth 
Camera

SPD and 
Laser

Radar
3D Image

MLP Algorithm

Fusion Input3D Images Ouput

......

SPD and LaserRadarFusion Histograms

Human Without 
Background

Retrieved Images MLP 

Human Without 
BackgroundFusion Histogram

(a) (b) 
ANN Training

Fig. 1. 3D imaging with fusion data. (a) Data acquisition process; (b) 3D images recovery process; in the 3D images recovery process, the ANN training is performed
only once, and then the MLP algorithm can directly reconstruct the 3D image from the temporal histogram. The radar represents the millimeter-wave radar. The
human moves in an empty room.
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SPDs involves incorporating a background behind the subject,
as depicted in Fig. 2(b). By including asymmetric targets within
the background, symmetry blur is eliminated, and the back-
ground imparts relative positional information during the neu-
ral network training of the scene (Turpin et al.[30]). An
alternative approach entails utilizing the multipath effect of
radio frequency or acoustic waves within a confined space to
enhance the amount of information and eliminate symmetry
blur (Turpin et al.[32]).
In real-world scenarios, certain locations such as flat ground,

long corridors, and open rooms may lack sufficiently complex
backgrounds andmultipath signals to provide relative positional
information in the data. This gives rise to the inevitable problem
of symmetry blur when conducting target detection in such
environments. When the scene is limited and unchangeable,
addressing the challenge of symmetry blur requires improve-
ments in the detection-end sensor. In this regard, we propose
a cost-effective solution that integrates a millimeter-wave radar
sensor and introduces a fusion-data-based 3D imaging method.

As depicted in Figs. 3(a)–3(c), the algorithm that fuses milli-
meter-wave data successfully eliminates symmetry blur and
achieves clear reconstruction of the human body. Conversely,
Figs. 3(d)–3(f) demonstrate that the single-pixel single-photon
method produces symmetry blur in the absence of background,
rendering it impossible to discern the specific location of the
target.

4. Experimental Results

Numerical simulations were initially conducted to validate the
feasibility of our approach, followed by imaging tests on individ-
uals and objects within the experimental environment. The
experimental system used in the tests is shown in Fig. 4. A super-
continuum laser generated an optical pulse with a width of 6 ps
and a wavelength of 1550 ± 25 nm. This pulse was expanded and
projected onto the target through the transmitting optical path
of the optical lens system. The reflected light was collected by the
optical lens system, then coupled into a fiber using a collimator,
and detected by a superconducting nanowire single-photon
detection (SNSPD) device via another fiber, with a time jitter
of 50 ps. To generate a temporal histogram, the ToF interval
between the laser and the reflected light was recorded using a
TDC known as the Swabian time tagger ultra. Simultaneously,
the millimeter-wave radar (model TI IWR6843) captured the
1D distance image of the scene, providing a distance resolution
of 50 cm and a range of 0 to 7 m. Both optical system and milli-
meter-wave radar focus on distance measurements, requiring
the detection of the flight time of light/microwaves through
space. Due to the inherent delays and errors in the optical path
and electrical circuitry of the system, an object actually situated
1 m away may yield a measured value of 2 m or some other dis-
tance. Therefore, distance calibration is necessary. Our calibra-
tion method involves placing a mirror/metal reflector at a
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Fig. 3. Simulation and reconstruction results of the fusion method. (a)–(c) Images recovered using a fused data-based 3D image reconstruction algorithm;
(d)–(f) images recovered using only single-photon data. The first column shows fused temporal histograms generated by simulation [(a)–(c)] or histograms
with only single-photon data [(d)–(f)], the second column shows the ground-truth depth maps generated by simulation, and the third column shows the recon-
structed images of the time histogram recovered by the MLP algorithm.
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Fig. 2. Single-pixel SPD imaging simulation result. (a) Single-pixel 3D imaging
symmetry blur result due to lack of background information; (b) 3D imaging
without symmetry blur in the background.
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distance of 1 m from the sensor (aligned horizontally with the
sensor and verified with a high-precision ruler). We then cali-
brate the peak value of the detected distance at this position
to be 1 m. Additionally, the depth camera (model Orbbec
Gemini 2) acquired a 3D depth map of the scene with a range
of 0 to 6 m. The measured impulse response function (IRF) of
our system was approximately 200 ps. Specific parameters for
each device can be found in the Supplementary Material.
In the imaging experiment, we conducted tests in an open

room to simulate simple background imaging conditions, as
depicted in Fig. 4(b). The room had dimensions of 6m × 6m,
and the target was positioned at a distance of more than 3 to
4 m from the detector. The target’s position within the scene
was randomized. To ensure synchronization, the single-pixel
single-photon ToF measurement system, millimeter-wave radar
system, and depth camera were synchronized every 3 s, result-
ing in the collection of 4000 sets of fused temporal histo-
grams and 3D images (1000 sets of humans and 3000 sets of
letters). Our method requires fewer training data and yields
high-quality image reconstruction compared to methods that
typically require 6000–10,000 data sets for training algorithms.
The data sets were randomly divided into training and test-
ing sets in a 9:1 ratio. The imaging results are presented in
Fig. 5 (additional experimental results can be found in the
Supplementary Material).
We evaluate the quality of the reconstructed images by com-

puting the structural similarity index measure (SSIM) between
the reconstructed images and the ground-truth images[40]. SSIM
is a perceptual image quality assessment method based on
human visual characteristics that can quantify the degree of
distortion in an image and is consistent with human perception
of image distortion. SSIM is calculated by comparing the

luminance, contrast, and structural similarity of two images,
as shown in Eqs. (5)–(8),

l�x, y� = 2μxμy � c1
μ2x � μ2y � c1

, (5)

c�x, y� = 2σxσy � c2
σ2x � σ2y � c2

, (6)

s�x, y� = σxy � c3
σxσy � c3

, (7)

SSIM�x, y� = l�x,y�α · c�x,y�β · s�x,y�γ: (8)

Among them, μ is themean, σ is the variance, σxy is the covari-
ance, the constant cn is used to avoid division by 0, the determi-
nation rule is related to the range of pixel values, and the three
power exponents α, β, and γ are used to adjust the importance of
the three factors. Generally, the default is 1. At this time, the cal-
culation formula is

SSIM�x, y� = �2μxμy � c1��2σxy � c2�
�μ2x � μ2y � c1��σ2x � σ2y � c2�

: (9)

In Figs. 5(a)–5(d), the first column presents the temporal his-
tograms used for image reconstruction. The second column dis-
plays the ground-truth depth maps captured by a depth camera
for comparison. The third column showcases the reconstructed
images based on the histograms from the first column. Each sub-
figure depicts the reconstructed images with fusion data, only
single-photon data, and only millimeter-wave data, arranged
from top to bottom. Among the 400 testing data sets, our
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proposed fusion method exhibits an average SSIM of 0.6576,
surpassing the SSIM of the single-photon method (0.6389)
and the radar method (0.5266).
In Figs. 5(a) and 5(b), the fusion method effectively recon-

structs clear images of a person. However, the single-photon-
only method lacks background information, leading to an
imprecise determination of the person’s lateral position and
resulting in symmetry blur around the person. The radar results
reveal that the larger IRF causes the loss of certain details in the
shapes, such as incomplete recovery of arms or legs.
In Fig. 5(c), imaging experiments were performed with a per-

son holding the letter “C” (with dimensions of 40 cm × 30 cm).
It is evident that the fusion method achieves the highest imaging
quality. The single-photon-only method displays an artifact on
the right side of the reconstructed image, while the radarmethod
fails to produce a clear image of the letter “C” due to insufficient
resolution.
In Fig. 5(d), another imaging experiment was conducted

using the letter “T” (with dimensions of 30 cm × 20 cm). It is evi-
dent that when the object being imaged is smaller, both the pho-
ton-only and radar methods yield poor image reconstruction
results, making it challenging to distinguish between the person

and the letter. However, when the two sets of data are fused
together, the object can be reconstructed clearly.
The obtained results demonstrate that the fusion-data-driven

3D imaging method effectively addresses the issue of symmetry
blur in single-pixel single-photon 3D imaging. By utilizing a
fusion-based approach, the mapping relationship between 3D
imaging and ToF histograms is established more effectively,
leading to enhanced system performance and robustness.

5. Discussion

We incorporated millimeter-wave radar as an auxiliary sensing
sensor in our proposed method and experiments to eliminate
symmetry blur in imaging and enhance imaging quality.
Millimeter-wave radar was selected due to its affordability,
all-weather operability, and simplicity of data. These advantages
enabled us to achieve considerable improvements in image qual-
ity at a relatively low cost.
In the experiment, adhering to the principles of binocular

vision, it was necessary tomaintain a certain separation distance,
referred to as the baseline, between the single-pixel SPD and the
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millimeter-wave radar. The data obtained from both sensors
consisted of 1D temporal data, eliminating the requirement
for sensor calibration. It is essential to avoid selecting a baseline
that is too close, as this would result in minimal variations in the
collected data when objects are in motion. Due to the limited
detection field of view of the two sensors, an excessively large
baseline distance is also impractical. While a larger baseline
enhances imaging accuracy, it introduces blind spots. The imag-
ing performance associated with different baseline distances can
be evaluated in subsequent studies.
For data fusion, we adopted a straightforward approach by

directly concatenating the 1D single-photon temporal histo-
gram with the millimeter-wave radar data. This simplified the
data processing procedure, avoided increasing the complexity
of the ANN, and yielded satisfactory imaging results. More com-
plex and in-depth data fusion methods can further improve the
quality of imaging, which is where future work can be directed.
The combined utilization of the all-weather operation of milli-
meter-wave radar and the low-light detection capability of SPDs
endowed our proposedmethodwith excellent imaging potential,
even in extreme conditions such as foggy and rainy weather.
In addition tomillimeter-wave radar, we employed a 1550 nm

laser as the emission source for the optical system. Compared to
previous work that used 550 nm, the 1550 nm laser offered
improved eye safety and enabled higher power output. In cur-
rent autonomous driving vehicles, lidar and millimeter-wave
radar are widely employed independently for detection pur-
poses. However, our proposed method integrates the raw data
from both sensors, resulting in a robust imaging system.
Consequently, our method holds significant potential for appli-
cations in unmanned autonomous navigation platforms and
autonomous driving.
During the ANN training, the ground truth collected by the

depth camera determines the highest resolution of the system.
The IRF of the single-photon system determines the image
reconstruction performance of the algorithm. When the IRF
is smaller, the reconstructed image is closer to the ground truth.

6. Conclusion

Instead of utilizing structured light illumination or laser scan-
ning, single-pixel 3D imaging leverages data-driven imaging-
retrieval algorithms to convert the 1D temporal histogram
obtained from the scene into a 3D depth map. However, the
inherent limitations of single-pixel imaging may give rise to
issues such as symmetry blur in data-driven image-retrieval
algorithms. In this paper, we present a novel single-pixel 3D im-
aging method that integrates temporal data from an SPD and a
millimeter-wave radar. Specifically, our approach involves cap-
turing temporal histograms of objects using both a single-pixel
SPD and a millimeter-wave radar. The acquired data are then
fused and employed to train a neural network based on the
MLP algorithm capable of reconstructing 3D images. To validate
the performance of our proposed method, we conducted
numerical simulations and experimental measurements.

Remarkably, the results demonstrate the superiority of our
approach over relying solely on a single-pixel SPD, as it signifi-
cantly eliminates the impact of symmetrical blur on image
reconstruction. Our proposed method exhibits exceptional
imaging performance and robustness compared to existing
approaches. The combination of SPD and millimeter-
wave radar enables the development of a novel 3D image
reconstruction system, which holds tremendous potential for
various applications, including unmanned autonomous naviga-
tion platforms, forward-looking imaging in vehicles, and indoor
security monitoring.
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